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Abstract

The conformations of loops are determined by the water-mediated interactions between amino acid residues.
Energy functions that describe the interactions can be derived either from physical principles (physical-
based energy function) or statistical analysis of known protein structures (knowledge-based statistical
potentials). It is commonly believed that statistical potentials are appropriate for coarse-grained represen-
tation of proteins but are not as accurate as physical-based potentials when atomic resolution is required.
Several recent applications of physical-based energy functions to loop selections appear to support this view.
In this article, we apply a recently developed DFIRE-based statistical potential to three different loop decoy
sets (RAPPER, Jacobson, and Forrest-Woolf sets). Together with a rotamer library for side-chain optimi-
zation, the performance of DFIRE-based potential in the RAPPER decoy set (385 loop targets) is compa-
rable to that of AMBER/GBSA for short loops (two to eight residues). The DFIRE is more accurate for
longer loops (9 to 12 residues). Similar trend is observed when comparing DFIRE with another physical-
based OPLS/SGB-NP energy function in the large Jacobson decoy set (788 loop targets). In the Forrest-
Woolf decoy set for the loops of membrane proteins, the DFIRE potential performs substantially better than
the combination of the CHARMM force field with several solvation models. The results suggest that a
single-term DFIRE-statistical energy function can provide an accurate loop prediction at a fraction of
computing cost required for more complicate physical-based energy functions. A Web server for academic
users is established for loop selection at the softwares/services section of the Web site http://theory.med.
buffalo.edu/.
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The regions of protein structures that do not belong to regu-
lar secondary structural units are all grossed under the term
“loop.” Unlike secondary structure units, the conformations
of loops are more like coils (Swindells et al. 1995), and the
same loop sequence may have totally different conforma-

tions in different proteins (Kabsch and Sander 1985; Cohen
et al. 1993; Mezei 1998). Loops often are the most flexible
part of proteins, and their flexibility sometimes plays a func-
tional role such as in molecular switches, molecular recog-
nition, induced fit, ion selectivity, and domain swapping
(Brooks III et al. 1988). The short lengths, conformational
diversity, and weak dependence of structure on sequence all
make the prediction of loop conformations an ideal and
challenging testing ground for the accuracy of an energy
function. Moreover, loop prediction itself is an essential part
of homology modeling because the loop regions are most
likely the structurally unconserved regions (Fiser et al.
2000).
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Loop-structure prediction is a nontrivial miniprotein fold-
ing problem, especially if the loop length is longer than
eight residues (Mart-Renom et al. 2000; Schonbrun et al.
2002). There are two main approaches for loop prediction.
The ab initio methods involve energy-biased (or score-bi-
ased) conformational search (Fine et al. 1986; Moult and
James 1986a,b; Bruccoleri and Karplus 1987; Rapp and
Friesner 1999; Galaktionov et al. 2001; Xiang et al. 2002),
whereas the database methods attempt to locate the loop
fragment from a database that fits most to the loop region
(Greer 1980; Donate et al. 1996; Oliva et al. 1997; Rufino
et al. 1997; Burke et al. 2000; Burke and Deane 2001). The
combination of the two approaches has also been proposed
(Chothia et al. 1986; van Vlijmen and Karplus 1997; Deane
and Blundell 2001).

The key for the success of ab initio prediction is an ac-
curate conformational sampling (or search) of near-native
conformations and an accurate energy function that selects
the near-native conformations as the lowest (free) energy
conformation. The energy function that would yield a com-
plete understanding of loop folding should be derived from
the laws of physics. However, the use of such physical-
based potentials (Brooks et al. 1983; Weiner et al. 1986;
Jorgensen et al. 1996; Scott et al. 1999) for ab initio loop
prediction is limited by available computing power. Their
large-scale application to loop prediction (de Bakker et al.
2003; Jacobson et al. 2003) often requires an implicit-sol-
vent model to approximate solvent contribution to the sta-
bility of a loop conformation.

An alternative approach to obtain energy function is the
knowledge-based statistical potential that extracts interac-
tion energies directly from known protein structures
(Tanaka and Scheraga 1976). Knowledge-based statistical
potentials are attractive because they are simple and com-
putationally efficient. For example, de Bakker et al. (2003)
found that loop prediction using the knowledge-based all-
atom potential RAPDF (Samudrala and Moult 1998) is
about two orders of magnitude faster than using the physi-
cal-based energy-function AMBER (Weiner et al. 1986)
with generalized Born solvation and accessible surface-con-
tinuum solvation (GBSA) model (Qiu et al. 1997). Unfor-
tunately, RAPDF is found to be significantly less accurate in
loop prediction than AMBER/GBSA.

The accuracy of knowledge-based potentials has been
limited because these potentials often violate or ignore basic
physical principles. For example, the higher population of
hydrophobic residues than that of hydrophilic residues at the
core of proteins leads to unphysical long-range repulsion
between hydrophobic residues (Thomas and Dill 1996) for
the distance-dependent pair potential based on the com-
monly used Sippl approximation (Sippl 1990). The signifi-
cantly different compositions at the surface, core, and in-
terface of proteins (Glaser et al. 2001; Lu et al. 2003; Ofran
and Rost 2003) yield quantitatively different distance-de-

pendent pair potentials for folding and binding studies
(Moont et al. 1999; Lu et al. 2003), despite the fact that
folding and binding involve the same physical interaction—
water-mediated interaction between amino acid residues.

Recently, a residue-specific all-atom, distance-dependent
potential of mean force was extracted from the structures of
single-chain proteins by using a physical state of uniformly
distributed points in finite spheres (distance-scaled, finite,
ideal-gas reference [DFIRE] state) as the zero-interaction
reference state (Zhou and Zhou 2002). Remarkably, the
physical reference state yields a potential of mean force that
no longer possesses some unphysical characteristics associ-
ated with other statistical potentials. It was shown that the
accuracy of DFIRE-based potential is insensitive to the par-
titioning of hydrophobic and hydrophilic residues within a
protein (Zhou and Zhou 2002). More importantly, the new
structure-derived potential can quantitatively reproduce the
likelihood of a residue to be buried (i.e., the composition
difference of amino acid residues between core and surface;
Zhou and Zhou 2003). The potential also yields a stability
scale of amino acid residues in quantitative agreement with
that independently extracted from mutation experimental
data (Zhou and Zhou 2003). Moreover, the “monomer” po-
tential (derived from single-chain proteins) is found to be
equally successful in discriminating against docking de-
coys, distinguishing true dimeric interfaces from crystal in-
terfaces, and predicting binding free energy of protein–pro-
tein and protein–peptide complexes (Liu et al. 2004). The
results suggest that the DFIRE-based potential captures the
essence of the common physical interaction masked under
different compositions of amino acid residues on surface, at
core and interface of proteins.

In this article, we compare the performance of this physi-
cally more accurate statistical potential to that of physical-
based energy functions in loop prediction. Three loop decoy
sets were employed. The first set (called the RAPPER set),
built by de Bakker et al. (2003), contains 385 target loops of
length between 2 and 12 residues. Each loop has 1000 de-
coys. The second set (called the Jacobson set; Jacobson et
al. 2003) contains 788 target loops of lengths between 4 and
12 residues. Each loop contains 200–1400 decoys. The third
set, called the Forrest-Woolf set, is for two membrane pro-
teins (Rhodopsin and Ca2+-ATPase). Each protein has about
910 decoys, which are made from denaturations of several
designated loop regions. The performance of DFIRE poten-
tial is compared to that of the physical-based AMBER force
field (Weiner et al. 1986) with Generalized Born/Solvent-
accessible (GB/SA) surface potential for solvation (Qiu et
al. 1997) in the first set, the physical-based OPLS force field
(Jorgensen et al. 1996; Kaminski et al. 2001) with surface
generalized Born and a nonpolar solvation model (SGB-NP;
Gallicchio et al. 2002) in the second set, and the combina-
tion of CHARMM (Brooks et al. 1983) with several implicit
solvation models (effective energy function or EEF1; Laz-
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aridis and Karplus 1999; generalized Born/Analytical Con-
tinuum Solvent method or ACS; Schaefer et al. 1998; lin-
earized finite difference Poisson-Boltzmann equation for
solvation or FDPB in CHARMM; Brooks et al. 1983) in the
third set. Results indicate that DFIRE is comparable in ac-
curacy in loop selections of short loops and more accurate
for the selections of long loops (more than nine residues).
Because the computing time required by the DFIRE poten-
tial is only a tiny fraction of what is needed for physical-
based energy functions (about two orders of magnitude less,
according to one estimate; de Bakker et al. 2003), DFIRE
potential is expected to be useful in a genomic-scale ho-
mology modeling.

Results

RAPPER decoy set

The backbone structures in the RAPPER loop decoy set
were built by RAPPER (DePristo et al. 2003), a conforma-
tional sampling method in dihedral space. The side chains of
the decoys were built by SCWRL, a rotamer library search
method to minimize the energy of steric clash (Bower et al.
1997). The 385 loop targets (lengths from 2 to 12) were
collected by Fiser et al. (2000). The number of loops at each
loop length in the RAPPER decoy set is listed in Table S1
(Supplemental Material). Each loop has 1000 decoys.

Figure 1 compares the average global RMSD values of
those decoys that have the lowest energy score for their
respective target loops. The global RMSD values are the
RMSD of the target-loop region while structurally aligning
the rest of proteins. The energy scores are determined by
the all-atom knowledge-based energy-function RAPDF

(Samudrala and Moult 1998), the physical-based energy-
function AMBER/GBSA with and without minimization,
and DFIRE with and without sequentially optimized side-
chain conformations. The results for the first two methods
(RAPDF and AMBER/GBSA) were reported by de Bakker
et al. (2003). Only the results based on minimized energies
are displayed in Figure 1. (All results can be found in Table
S2 of the Supplemental Material.) It is clear that the DFIRE
with or without minimization is substantially more accurate
than RAPDF in selecting near-native decoys. The compari-
son between AMBER/GBSA and DFIRE is less clear cut.
The average global RMSD values for minimized structures
given by DFIRE are smaller than those given by AMBER/
GBSA for those loops of lengths between 9 and 12, the
same at a loop length of 8, but greater for the loops of
lengths between 2 and 7. It seems that DFIRE is more
accurate than AMBER/GBSA for longer loops but less so
for shorter ones. For the longest 11- and 12-residue loops,
DFIRE is substantially more accurate (i.e., is able to select
loops with significantly lower RMSD values [>0.5 Å]; 0.5
Å cutoff is an arbitrary cutoff number for the sake of
discussion.)

Even though DFIRE is less accurate than AMBER/GBSA
for short loops, its results are mostly comparable with those
given by AMBER/GBSA. The difference between the two
methods for the average global RMSD values of lowest
energy decoys for target loops is less than 0.5 Å except for
the six-residue loops (Fig. 1). The average global RMSD
value is 1.94 Å for DFIRE and 0.95 Å for AMBER/GBSA.
One of the reasons we found is that the decoy loop with the
lowest DFIRE energy (e.g., a six-residue loop [350–355] in
protein 1PHF [metyrapone- and phenylimidazole-inhibited
complexes of cytochrome P450cam]) occupied the position
intended for ligands (e.g., the heme group in 1PHF). In our
calculations, the positions of ligands (or other nonamino
acid atoms/molecules) are not included.

To remove errors not caused by energy functions (but
caused by, e.g., high flexibility, pH, and the presence of
ligands and ions), Jacobson et al. (2003) provided a filtered
loop set for the loop lengths between 4 and 10. (Jacobson et
al. did not include the short loops of lengths of 2 and 3
because they were only interested in loops longer than 3.
They did not study the loops of lengths of 11 and 12 in the
RAPPER set collected by Fiser et al. [2000] because those
loops often contain a high percentage of secondary struc-
tures.) Indeed, for this filtered loop decoy set, DFIRE results
are now comparable (less than 0.5 Å difference) to those of
AMBER/GBSA, as shown in Figure 1.

The trend that DFIRE is more accurate for long loops is
not only true for the average but is also true for the standard
deviation. For clarity, standard deviation is not shown in
Figure 1 but listed in Table S2. The standard deviations of
RMSD values given by DFIRE are comparable to those
given by AMBER/GBSA for short loops of length between

Figure 1. The average global rmsd (Å) to native structures of lowest-
energy RAPPER decoys using different scoring functions (as labeled) as a
function of loop length. (Up triangles) The best-possible selection (the
average of the smallest RMSD decoys sampled by RAPPER), (down tri-
angles) random selection (the average RMSD of all conformers sampled by
RAPPER), (left triangles) RAPDF, (circles) AMBER/GBSA minimized.
DFIRE with rotamer minimization for full and filtered sets are shown by
open diamonds and filled diamonds, respectively.
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2 and 4 but are smaller for long loops of lengths between 5
and 12.

Table S2 also shows the effect of energy minimization on
the accuracy of loop sections. In most cases, minimization
for the DFIRE energy function with a rotamer library im-
proves the global RMSD values somewhat. Minimization
also improves the correlation coefficients between the glob-
al RMSD values and energy scores (Table S3). The im-
provement in selection accuracy and correlation, however,
is small. This perhaps is related to the fact that only side-
chain conformation is allowed to change. In contrast, both
backbone and side-chain structures are permitted to change
during minimization with the AMBER/GBSA force field.
We defer the use of the DFIRE potential for optimizing the
backbone structures for future studies because the main pur-
pose of this study is to compare the performance of a sta-
tistical potential with those of physical-based potentials.

Figure 2 compares the correlation coefficients between
RMSD values and energy scores given by AMBER/GBSA
with minimization and by DFIRE with side-chain minimi-
zation. The average correlation coefficients for loop lengths
at 4, 8, and 12 given by DFIRE are all higher than those
given by AMBER/GBSA. This occurs despite the fact that
the average RMSD value of the lowest energy decoys given
by DFIRE for four-residue loops (0.81 Å) is higher than that
given by AMBER/GBSA (0.47 Å). More importantly, the
correlations are more stable for DFIRE than for AMBER/
GBSA. It is rare for DFIRE to have a negative correlation
but is common for AMBER/GBSA. The standard deviation
of the correlation coefficients is 0.17 (4-mer), 0.21 (8-mer),

and 0.21 (12-mer) for DFIRE but 0.44 (4-mer), 0.27 (8-
mer), and 0.25 (12-mer) for AMBER/GBSA. This suggests
that DFIRE could perform even better if used directly in
conformational search.

Jacobson decoy set

The Jacobson decoy set (2003) is substantially larger than
the RAPPER decoy set because it includes not only the loop
targets collected by Fiser et al. (2000) but also those by
Xiang et al. (2002). (Loop lengths of 2, 3, 11, and 12 col-
lected by Fiser et al. are not included for the reasons de-
scribed above.) The number of the loop targets for loop
lengths between 4 and 12 are listed in Table S1. Each loop
target has 200–1400 decoys. The quality of decoys is also
better than the RAPPER set. The lowest RMSD values of
the decoys in the Jacobson decoy set are lower than those in
the RAPPER set for the same loop targets. As mentioned
above, Jacobson et al. (2003) also provided a filtered loop
set to remove errors not caused by energy functions but by,
for example, high flexibility, pH, and the presence of li-
gands and ions. In this decoy set, all native structures and
their minimized conformations are not included in loop se-
lection as in the RAPPER set.

Figure 3 compares the performance of OPLS/SGB-NP
with that of DFIRE on the Jacobson decoy set. The results
are also shown in Table S4. For both full and filtered sets,
the differences between the two results are mostly less than
0.5 Å. The trend is the same as that observed in the RAPPER
decoy set where DFIRE is compared with another physical-
based energy function AMBER/GBSA. That is, the perfor-
mance of DFIRE is worse for short loops (4–10) and better
for longer loops (11 and 12). This is not only true for av-
erages but also true for standard deviation (not shown in
Fig. 3 for clarity but is listed in Table S4).

Dependence on sampling

Because both Jacobson and RAPPER decoy sets contain the
loop targets collected by Fiser et al. (2000), it is possible to
compare the dependence of performance on the quality of
the decoy set for the same target loop. Table 1 compares the
lowest RMSD values, the performance of DFIRE energy
functions of filtered decoy sets for the loop targets collected
by Fiser et al. (2000). It is clear that the quality of Jacobson
decoy set is significantly better than that of RAPPER decoy
set because the former has much better near-native decoys
(in term of decoys with the lowest RMSD values). Table 1
further indicates that as the quality of decoys improves, the
performance of DFIRE potential also improves. The im-
provement is reflected from the RMSD values of lowest
energy decoys and the correlation coefficients between
RMSD values and energy scores. For example, the predic-
tion accuracy improves from 2.39 Å to 1.33 Å as the quality

Figure 2. Correlation coefficients between the global RMSD (Å) of all
RAPPER loop decoy sets and their energy scores are plotted for individual
four-residue (top), eight-residue (middle), and 12-residue (bottom) loop
targets. The x-axis is the index number for loop target. The energy scores
are calculated by DFIRE potential plus sequential rotamer minimization
(filled squares) and minimization using the AMBER/GBSA force field
(open circles), respectively. The average correlation coefficients and stan-
dard error of 4-, 8-, and 12-mers for DFIRE is 0.7 ± 0.17, 0.5 ± 0.21, and
0.3 ± 0.21, while the corresponding value for AMBER/GBSA is
0.6 ± 0.44, 0.3 ± 0.27, and 0.1 ± 0.25.
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of the best decoys improves from 1.28 Å to 0.62 Å for the
nine-residue loop targets.

Forrest-Woolf decoy set

The Forrest-Woolf decoy set (2003) is more like a decoy set
for monomeric proteins because its decoys are not limited to
the conformational change of a single loop. Rather, all des-
ignated loops are subjected to conformational changes. (The
lengths of the designated loops range from 5 to 38). The
conformations of the decoys were generated evenly from
RMSD values of 0 to 10 Å by denaturing the designated
loop regions with various techniques. The decoy set was
built for two membrane proteins (1F88, Rhodopsin, and
1EUL, Ca2+-ATPase). The rhodopsin set contains 911 de-
coys and the Ca2+-ATPase set has 909 decoys. Because this
decoy set has conformational change in multiple loops, no
rotamer side-chain minimization is performed when using
the DFIRE energy function.

Figure 4 compares the RMSD value of decoys with the
DFIRE energy scores for the two proteins. The significant
correlations between RMSD values and the energy scores
exist for both proteins(r � 0.89 for 1F88 and 0.96 for
1EUL). This indicates that the Forrest-Woolf decoy set is an
easy set for the DFIRE energy function. For comparison, the
correlation coefficients from various CHARMM-based
force fields range from −0.27 to 0.64 for 1F88 and from
0.37 to 0.81 for 1EUL. More detail can be found in Table S5.

Another way to analyze the performance of energy func-
tion, developed by Forrest and Woolf is to obtain the aver-
age RMSD values as a function of the percent of lowest
energy structures (Fig. 5). This is done by ranking structures
according to energy scores and by averaging the RMSD
values of the structures as numbers of the low-energy
structures are added. An ideal energy function should
produce a curve with the lowest average RMSD value at
close to 0% of lowest energy structures. The curve should
monotonically increase as the percent of lowest energy

Table 1. Comparison of the performance of DFIRE for the filtered loop targets by Fiser et al. (2000) contained in RAPPER and
Jacobson decoy sets

Loop
length

Lowest rmsd (Å)a rmsd (Å)b Corr. coeff.c

RAPPER Jacobson RAPPER Jacobson RAPPER Jacobson

4 0.43 ± 0.24 0.25 ± 0.11 0.79 ± 0.45 0.38 ± 0.24 0.70 ± 0.17 0.52 ± 0.46
5 0.50 ± 0.29 0.24 ± 0.08 0.93 ± 0.44 0.44 ± 0.36 0.62 ± 0.24 0.63 ± 0.43
6 0.68 ± 0.29 0.29 ± 0.23 1.26 ± 0.75 0.70 ± 0.77 0.50 ± 0.22 0.65 ± 0.25
7 0.73 ± 0.25 0.28 ± 0.11 1.37 ± 0.83 0.79 ± 0.71 0.56 ± 0.22 0.58 ± 0.37
8 1.05 ± 0.47 0.43 ± 0.30 1.80 ± 0.96 1.03 ± 0.98 0.57 ± 0.17 0.64 ± 0.32
9 1.28 ± 0.56 0.62 ± 0.74 2.39 ± 1.10 1.33 ± 1.59 0.40 ± 0.22 0.59 ± 0.40

10 1.59 ± 0.59 0.33 ± 0.19d 3.25 ± 1.59 0.77 ± 0.59d 0.30 ± 0.25 0.61 ± 0.24d

a The lowest rmsd values and standard deviations of decoys are collected for each target loop and averaged for a given loop length.
b The rmsd values of the lowest energy decoys are collected for each target loop and averaged for a given loop length. The standard deviations are also
shown.
c The correlation coefficients between rmsd and energy scores are collected for each target loop and averaged for a given loop length. The standard
deviations are also shown.
d Results for the incomplete online decoy set.

Figure 3. The average global RMSD (Å) to native structures in selecting near-native loops from the Jacobson decoy set using different
scoring functions (as labeled) as a function of loop length. (Up triangles) The best-possible selection (the average of the best RMSD
conformers sampled), (down triangles) random selection (average RMSD of all conformers samples), (squares) DFIRE with rotamer
minimization, and (circles) OPLS/SGB-NP. The figures in the left and the right are for the full and the filtered decoy sets, respectively.
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structures increases (i.e., no high RMSD structures with low
energies).

Figure 5 shows that the average RMSD curves of DFIRE
energy functions are well behaved for both proteins. That is,
both curves are a near monotonic increasing function of the
percent of lowest energy structures with the lowest RMSD
value at near 0%. The results of DFIRE are compared with
the results of several physical-based energy functions ob-
tained by Forrest and Woolf. These physical-based energy
functions are the combination of CHARMM with various
solvation models denoted by FDPB (Brooks et al. 1983),
ACS UN (Schaefer et al. 1998), DDD + EEF1_UN (Lazari-
dis and Karplus 1999), DDD + ASP_UN (Forrest and
Woolf 2003), DDD_UN (Brooks et al. 1983), and VAC_UN
(Brooks et al. 1983). (Here, FDPB denotes finite-difference
Poisson Boltzmann, ACS, Analytical continuum solvent
model, UN, uncharged neutral ionic residues, DDD, the
distance-dependent dielectric constant, ASP, the atomic sol-
vation parameters, EEF, effective energy function, VAC,
CHARMM vacuum energy function). For clarity, only the
results of FDPB and ACS_UN are shown. For rhodopsin,
only FDPB and ACS_UN are successful in selecting near-

native conformation with smallest RMSD at start and a
monotonic increase as percent of lowest energy structures
increases. For Ca2+-ATPase, no CHARMM-based methods
were successful. The RMSD values of the lowest energy
decoy given by the CHARMM based methods are more
than 2 Å.

Discussion

The DFIRE-based statistical potential is a more physically
accurate potential than other all-atom statistical potentials
because the potential satisfies the physical requirement that
the same water-mediated interaction between amino acid
residues is responsible for folding and binding (Liu et al.
2004). This semiphysical DFIRE potential is tested for se-
lecting near-native structures among three loop decoy sets
(two soluble and one membrane protein sets). The DFIRE
results are compared to earlier results given by several
physical-based energy functions equipped with sophisti-
cated implicit solvation models. The comparison indicates
that the accuracy of the loop conformations selected by this
statistical potential is slightly worse than those of physical-

Figure 5. Average RMSD values of decoys as a function of the percent of lowest energy structures (see text) for the rhodopsin (left)
and Ca2+-ATPse (right). Decoys are first sorted by energy scores. The average RMSD starts from the lowest energy structure (near 0%
of the lowest energy structures) and the RMSD value of the next lowest energy structure is put in average as the percent of lowest
energy structures increases. The insets show the plots over the whole range up to 100%. The results for the DFIRE potential is shown
in the solid lines. Other energy functions as labeled. See text for details.

Figure 4. The energy score of a decoy as a function of its RMSD value for rhodopsin (1F88, left) and Ca2+-ATPse (1EUL, right).
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based energy functions for short loops. The difference, how-
ever, is smaller than 0.5 Å RMSD difference. More impor-
tantly, the DFIRE potential is more accurate for long loops
(more than nine residues). This result is understandable be-
cause physical-based potentials were built on quantum cal-
culations and parameter optimizations of short peptides,
whereas the DFIRE-potential was extracted from the struc-
tures of full-sized proteins. This work suggests that a sta-
tistical potential with an appropriate reference state can be
as accurate as (or more accurate than) physical-based po-
tentials at the atomic level of details. This is true despite the
fact that there is no explicit treatment of electrostatic and
hydrogen-bonding interactions and solvation effects.

The performance of the DFIRE energy function is
strongly dependent on the quality of decoy sets. Although
the quality of RAPPER decoy set is very good particularly
for short loops (the average lowest RMSD values of the
decoys for four- to nine-residue loops range 0.42–1.28 Å),
the DFIRE energy function performs significantly better
with a higher quality Jacobson decoy set (the average lowest
RMSD values of the decoys for four- to nine-residue loops
range 0.25–0.62 Å). This suggests that the sampling should
be done as accurate as possible, in particular, near the native
structure. Thus, an accurate conformational sampling con-
tinues to be a challenging task, particularly for long loops.
On the other hand, this may suggest the limitation of ap-
plying DFIRE potential to the decoy sets made by other
force fields because a low-RMSD structure sampled by
other methods may not be an optimal structure for the
DFIRE potential. We are currently employing DFIRE in
direct sampling of loop conformations. This will allow us to
produce a self-contained, fast, and accurate prediction of
loop conformations. The remarkable performance of the
DFIRE potential for loop selections is important because the
computational cost of a statistical potential is only a fraction
of what is needed for physical-based energy functions with
implicit solvation models.

Materials and methods

DFIRE-based potential

The derivation of equations, the method for extracting the DFIRE-
based potential using a structure database as well as the resulting
potential have been described or obtained previously (Zhou and
Zhou 2002). Here, we give a brief summary for completeness.

The atom–atom potential of mean force ū(i,j,r) between atom
types i and j that are distance r apart is given by Zhou and Zhou
(2002)

u�i,j,r� = �−�RTln
Nobs�i,j,r�

�r�rcut�
���r��rcut�Nobs�i,j,rcut�

0,r � rcut,

, r � rcut,

(1)

where � � 0.0157, R is the gas constant, T � 300 K, � � 1.61,
Nobs(i, j, r) is the number of (i,j) pairs within the distance shell r
observed in a given structure database, rcut � 14.5 Å, and
�r(�rcut) is the bin width at r(rcut). (�r � 2 Å, for r < 2 Å;
�r � 0.5 Å for 2 Å < r < 8 Å; �r � 1 Å for 8 Å < r < 15 Å.) The
� prefactor was determined so that the regression slope between
the predicted and experimentally measured changes of stability
due to mutation (895 data points) is equal to 1.0. The exponent �
for the distance dependence was obtained from the distance de-
pendence of the number of pairs of ideal gas points in finite
spheres (finite ideal-gas reference state). Residue specific atomic
types were used (167 atomic types) (Samudrala and Moult 1998;
Lu and Skolnick 2001). The number of observed atomic (i, j) pairs
with the distance shell r [Nobs(i, j, r)] was obtained from a struc-
tural database of 1011 nonhomologous (less than 30% homology)
proteins with resolution <2 Å, which was collected by Hobohm et
al. (1992) (http://chaos.fccc.edu/research/labs/dunbrack/culledpdb.
html). This database provides sufficient statistics for most distance
bins (except near the hard repulsive van der Waals regions be-
tween atoms). The average number of observed atomic pairs per
bin is 655. The sufficiency of statistics is also reflected from the
fact that the results for structural discrimination are insensitive to
the size of structural database used to generate the potential (Zhou
and Zhou 2002).

Side-chain reoptimization

In addition to directly apply the DFIRE-based energy function to
decoys, we also minimize the energy by optimizing side-chain
conformations with side-chain rotamer library. Only the side
chains of the loop regions are subjected to conformational optimi-
zation. The optimization method we used is similar to the simple
sampling method described by Xiang and Honig (2001; Xiang et
al. 2002). Briefly, starting from the initial conformation (the origi-
nal loop decoy conformation), we minimized the total energy by
changing the side-chain conformation one loop residue at a time,
with DFIRE potential plus side-chain rotamer library. The side-
chain dihedral angle-based rotamer library is obtained from Dun-
brack Jr. and Cohen (1997) (http://dunbrack.fccc.edu/bbdep). We
choose a rotamer as the side-chain conformation of the residue if
the total energy of the whole protein with this rotamer is at a
minimum. In each step, the optimal side-chain conformation for
each residue is located sequentially from the first to the last residue
in each loop. The total energy at each step is then evaluated. The
iteration continues if the total energy is equal to or less than that of
the previous step. The total energies are considered as the same if
their difference is smaller than 0.1%. This method is simple and
computationally efficient.

Structure selections from decoys

For a given conformation of a loop, the total residue–residue po-
tential of mean force, G, is

�Gbind = �
i, j, ∈ loop

u�i,j,rij� + �
i ∈ loop, j ∉ loop

u�i,j,rij� (2)

In structure selections from decoy sets, the total free energy G is
calculated for each structure with DFIRE potential. The global
RMSD value (see below) of the decoy that has the lowest energy
is recorded. The performance of an energy function is analyzed by
the average RMSD values of the lowest energy decoys for differ-
ent target loops at a given loop length.
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Local RMSD versus global RMSD

The backbone heavy atoms (N, C�, C, O) are used to calculate the
RMSD of loops. The local RMSD is the RMSD value by aligning
the loop region only. The global RMSD is calculated from the loop
region but by aligning the proteins except the loop region. In
general, the local RMSD is smaller than the global RMSD. In this
manuscript, we use global RMSD only because a global RMSD
value contains the information of the orientation of the target loop
relative to the rest of the protein.
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